Receptor Protein Tyrosine Phosphatase γ Is a Marker for Pyramidal Cells and Sensory Neurons in the Nervous System and Is Not Necessary for Normal Development

Author:

Lamprianou Smaragda1,Vacaresse Nathalie1,Suzuki Yoshihisa2,Meziane Hamid3,Buxbaum Joseph D.4,Schlessinger Joseph2,Harroch Sheila1

Affiliation:

1. Institut Pasteur, Department of Neuroscience, 25 Rue du Dr. Roux, 75724 Paris, France

2. Yale University School of Medicine, Department of Pharmacology, P.O. Box 208066, New Haven, Connecticut 06520-8066

3. Mouse Clinical Institute, 67404 Illkirch Cedex, Strasbourg, France;

4. Mount Sinai School of Medicine, Departments of Psychiatry, Neuroscience, and Geriatrics and Adult Development, One Gustave Levy Place, New York, New York 10029

Abstract

ABSTRACT In order to gain insight into the biological role of receptor protein tyrosine phosphatase γ (RPTPγ), we have generated RPTPγ-null mice. RPTPγ was disrupted by insertion of the β-galactosidase gene under the control of the RPTPγ promoter. As the RPTPγ-null mice did not exhibit any obvious phenotype, we made use of these mice to study RPTPγ expression and thus shed light on potential biological functions of this phosphatase. Inspection of mouse embryos shows that RPTPγ is expressed in a variety of tissues during embryogenesis. RPTPγ is expressed in both embryonic and adult brains. Specifically, we detected RPTPγ expression in cortical layers II and V and in the stratum pyramidale of the hippocampus, indicating that RPTPγ is a marker for pyramidal neurons. Mixed primary culture of glial cells showed a lack of expression of RPTPγ in astrocytes and a low expression of RPTPγ in oligodendrocytes and in microglia. Interestingly, RPTPγ expression was detected in all sensory organs, including the ear, nose, tongue, eye, and vibrissa follicles, suggesting a potential role of RPTPγ in sensory neurons. An initial behavioral analysis showed minor changes in the RPTPγ-null mice.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3