Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri

Author:

Fiebig K.1,Gottschalk G.1

Affiliation:

1. Institut für Mikrobiologie der Universität Göttingen, D-3400 Göttingen, West Germany

Abstract

A sulfate-reducing vibrio was isolated from a methanogenic enrichment with choline as the sole added organic substrate. This organism was identified as a member of the genus Desulfovibrio and was designated Desulfovibrio strain G1. In a defined medium devoid of sulfate, a pure culture of Desulfovibrio strain G1 fermented choline to trimethylamine, acetate, and ethanol. In the presence of sulfate, more acetate and less ethanol were formed from choline than in the absence of sulfate. When grown in a medium containing sulfate, a coculture of Desulfovibrio strain G1 and Methanosarcina barkeri strain Fusaro degraded choline almost completely to methane, ammonia, and hydrogen sulfide and presumably to carbon dioxide. Methanogenesis occurred in two distinct phases separated by a lag of about 6 days. During the first phase of methanogenesis choline was completely converted to trimethylamine, acetate, hydrogen sulfide, and traces of ethanol by the desulfovibrio. M. barkeri fermented trimethylamine to methane, ammonia, and presumably carbon dioxide via dimethyl- and methylamine as intermediates. Simultaneously, about 60% of the acetate expected was metabolized. In the second phase of methanogenesis, the residual acetate was almost completely catabolized.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3