Physiology and metabolism of pathogenic neisseria: tricarboxylic acid cycle activity in Neisseria gonorrhoeae

Author:

Hebeler B H,Morse S A

Abstract

Tricarboyxlic acid cycle activity was examined in Neisseria gonorrhoeae CS-7. The catabolism of glucose in N. gonorrheae by a combination of the Entner-Doudoroff and pentose phosphate pathways resulted in the accumulation of acetate, which was not further catabolized until the glucose was depleted or growth became limiting. Radiorespirometric studies revealed that the label in the 1 position of acetate was converted to CO2 at twice the rate of the label in the 2 position, indicating the presence of a tricarboxylic acid cycle. Growth on glucose markedly reduced the levels of all tricarboxylic acid cycle enzymes except citrate synthase (EC 4.1.3.7). Extracts of glucose-grown cells contained detectable levels of all tricarboxylic acid cycle enzymes except aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), and a pyridine nucleotide-dependent malate dehydrogenase (EC 1.1.1.37). Extracts of cells capable of oxidizing acetate lacked only the pyridine nucleotide-dependent malate dehydrogenase. In lieu of this enzyem, a particulate pyridine nucleotide-independent malate oxidase (EC 1.1.3.3) was present. This enzyme required flavin adenine dinucleotide for activity and appeared to be associated with the electron transport chain. Radiorespirometric studies utilizing labeled glutamate demonstrated that a portion of the tricarboxylic acid cycle functioned during glucose catabolism. In spite of the presence of all tricarboxylic acid cycle enzymes, N. gonorrhoeae CS-7 was unable to grow in medium supplemented with cycle intermediates.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. Studies on biological oxidations. I. Oxidations produced by gonococci;Barron E. S. G.;J. Biol. Chem.,1932

2. Distribution and properties of isocitratase in plants;Carpenter W. D.;Plant Physiol.,1959

3. Factors affecting the pathways of glucose catabolism and the tricarboxylic acid cycle in Pseudomonas natriegens;Cho H. W.;J. Bacteriol.,1967

4. Dagley S. 1969. Citrate Iyase p. 160-163. In J. M. Lowenstein (ed.) Methods in enzymology vol. XIII. Academic Press Inc. New York.

5. The teleonomic significance of biosynthetic control mechanisms;Davis B. D.;Cold Spring Harbor Symp. Quant. Biol.,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3