Species’ functional traits and interactions drive nitrate-mediated sulfur-oxidizing community structure and functioning

Author:

Deng Tongchu12ORCID,He Zhili3,Xu Meiying12ORCID,Dong Meijun12,Guo Jun12,Sun Guoping12,Huang Haobin12

Affiliation:

1. State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Science , Guangzhou, China

2. Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security , Guangzhou, Guangdong, China

3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China

Abstract

ABSTRACT Understanding processes and mechanisms governing microbial community structure and function is a central goal in microbial ecology. Previous studies disentangling the community assembly mechanisms were mainly based on taxonomic diversity but were rarely combined with species’ functional traits and interactions. Here, we showed how species’ functional traits and interactions determined microbial community structure and functions by a well-controlled laboratory experiment with nitrate-mediated sulfur oxidation systems using both culture-independent and culture-dependent technologies. The results showed that species were different in functional traits of nitrate-mediated sulfide and thiosulfate oxidation, which determined their relative abundance in the nitrate-mediated sulfur oxidation systems. Those thiosulfate-oxidizing microbes co-occurred with Thiobacillus by using intermediates (e.g., thiosulfate) secreted by Thiobacillus during sulfide oxidation process. Such metabolic dependencies exerted great effects on community functions. Metabolic dependencies between Thiobacillus and genera that oxidized thiosulfate to more sulfate (e.g., Ciceribacter ) sustained high and stable oxidation activities of sulfide to sulfate. In contrast, metabolic dependencies between Thiobacillus and genera that oxidized thiosulfate to tetrathionate (e.g., Pseudoxanthomonas ) slowed down the production of sulfate, indicating changes in the metabolic flow. In addition, competitions among species were mostly detrimental to the stability of community function. These results revealed that species’ functional traits and interactions were the intrinsic factors determining community structure and functions. This study advances our understanding of microbial community assembly and functions of the nitrate-mediated sulfur oxidation process from the perspectives of species’ functional traits and interactions and has important implications for designing and constructing microbiomes with expected functions. Importance Understanding the processes and mechanisms governing microbial community assembly and their linkages to ecosystem functioning has long been a core issue in microbial ecology. An in-depth insight still requires combining with analyses of species’ functional traits and microbial interactions. Our study showed how species’ functional traits and interactions determined microbial community structure and functions by a well-controlled laboratory experiment with nitrate-mediated sulfur oxidation systems using high-throughput sequencing and culture-dependent technologies. The results provided solid evidences that species’ functional traits and interactions were the intrinsic factors determining community structure and function. More importantly, our study established quantitative links between community structure and function based on species’ functional traits and interactions, which would have important implications for the design and synthesis of microbiomes with expected functions.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3