Affiliation:
1. Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892.
Abstract
Human immunodeficiency virus type 1 Rev protein modulates the distribution of viral mRNAs from the nucleus to the cytoplasm by interaction with a highly structured viral RNA sequence, the Rev-responsive element (RRE). To identify the minimal functional elements of RRE, we evaluated mutant RREs for Rev binding in vitro and Rev response in vivo in the context of a Gag expression plasmid. The critical functional elements fold into a structure composed of a stem-loop A, formed by the ends of the RRE, joined to a branched stem-loop B/B1/B2, between bases 49 and 113. The 5' 132 nucleotides of RRE, RREDDE, which possessed a similar structure, bound Rev efficiently but were nonfunctional in vivo, implying separate binding and functional domains within the RRE. Excision of stem-loop A reduced Rev binding significantly and abolished the in vivo Rev response. The B2 branch could be removed without severe impairment of binding, but deletions in the B1 branch significantly reduced binding and function. However, deletion of 12 nucleotides, including the 5' strand of stem B, abolished both binding and function, while excision of the 3' strand of stem B only reduced them. Maintenance of the native RRE secondary structure alone was not sufficient for Rev recognition. Many mutations that altered the primary structure of the critical region while preserving the original RNA conformation were Rev responsive. However, mutations that changed a 5'..CACUAUGGG..3' sequence in the B stem, without affecting the overall structure abolished both in vitro Rev binding and the in vivo Rev response.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献