Cell-based and cell-free firefly luciferase complementation assay to quantify Human Immunodeficiency Virus type 1 Rev-Rev interaction

Author:

Hansen TuckerORCID,Baris Jodie,Zhao Min,Sutton Richard

Abstract

AbstractRev is an essential regulatory protein of Human Immunodeficiency Virus type 1 (HIV) that is found in the nucleus of infected cells. Rev multimerizes on the Rev-response element (RRE) of HIV RNA to facilitate the export of intron-containing HIV mRNAs from the nucleus to the cytoplasm, and, as such, HIV cannot replicate in the absence of Rev. We have developed cell-intact and cell-free assays based upon a robust firefly split-luciferase complementation system, both of which quantify Rev-Rev interaction. Using the cell-based system we show that additional Crm1 did not impact the interaction whereas excess Rev reduced it. Furthermore, when a series of mutant Revs were tested, there was a strong correlation between the results of the cell-based assay and the results of a functional Rev trans-complementation infectivity assay. Of interest, a camelid nanobody (NB) that was known to inhibit Rev function enhanced Rev-Rev interaction in the cell-based system. We observed a similar increase in Rev-Rev interaction in a cell-free system, when cell lysates expressing NLUC-Rev or CLUC-Rev were simply mixed. In the cell-free system Rev-Rev interaction occurred within minutes and was inhibited by excess Rev. The levels of interaction between the mutant Revs tested varied by mutant type. Treatment of Rev lysates with RNAse minimally reduced the degree of interaction whereas addition of HIV RRE RNA enhanced the interaction. Purified GST-Rev protein inhibited the interaction. The Z-factor (Z’) for the cell-free system was ~0.85 when tested in 96-well format, and anti-Rev NB enhanced the interaction in the cell-free system. Thus, we have developed both cell-intact and cell-free systems that can reliably, rapidly, and reproducibly quantify Rev-Rev interaction. These assays, particularly the cell-free one, may be useful in screening and identifying compounds that inhibit Rev function on a high throughput basis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3