Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae

Author:

Snyder M1,Sapolsky R J1,Davis R W1

Affiliation:

1. Department of Biology, Yale University, New Haven, Connecticut 06511.

Abstract

Transcription directed into a Saccharomyces cerevisiae autonomously replicating sequence (ARS) causes high-frequency loss of minichromosomes. Conditionally stable artificial yeast chromosomes were constructed that contain an inducible GAL promoter upstream of ARS1. Under growth conditions in which the promoter was inactive, these chromosomes were mitotically stable; however, when the GAL promoter was induced, the chromosomes became extremely unstable as a result of transcriptional impairment of ARS function. This interference by the GAL promoter occurred only in cis but can occur from either side of ARS1. Transcriptional interference of ARS function can be monitored readily by using a visual colony-color assay (P. Hieter, C. Mann, M. Snyder, and R.W. Davis, Cell 40:381-392, 1985), which was further developed as a sensitive in vivo assay for sequences which rescue ARS from transcription. DNA fragments from the 3' ends of genes, inserted downstream of the GAL promoter, protected ARS function from transcriptional interference. This assay is expected to be independent of both RNA transcript stability and processing. Philippsen et al. have shown that transcription into a yeast centromere inhibits CEN function in vivo (L. Panzeri, I. Groth-Clausen, J. Shepard, A. Stotz, and P. Philippsen, Chromosomes Today 8:46-58, 1984). We identified two 200- to 300-base-pair DNA fragments flanking CEN4 that rescued ARS1 from transcription. Both of these fragments protected ARS from transcription when inserted in either orientation. The 3' ends of stable transcripts are encoded by fragments that protected the ARS from transcription, suggesting that the protection was achieved by transcription termination. It is suggested that protection of elements important for the replication and segregation of eucaryotic chromosomes from transcription is necessary for their proper function in vivo.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3