Inactivation of the Pre-mRNA Cleavage and Polyadenylation Factor Pfs2 in Fission Yeast Causes Lethal Cell Cycle Defects

Author:

Wang Shao-Win1,Asakawa Kazuhide2,Win Thein Z.1,Toda Takashi2,Norbury Chris J.3

Affiliation:

1. Department of Zoology

2. Cell Regulation Laboratory, London Research Institute, Cancer Research UK, London, United Kingdom

3. Sir William Dunn School of Pathology, University of Oxford, Oxford

Abstract

ABSTRACT Faithful chromosome segregation is fundamentally important for the maintenance of genome integrity and ploidy. By isolating conditional mutants defective in chromosome segregation in the fission yeast Schizosaccharomyces pombe , we identified a role for the essential gene pfs2 in chromosome dynamics. In the absence of functional Pfs2, chromosomal attachment to the mitotic spindle was defective, with consequent chromosome missegregation. Under these circumstances, multiple intracellular foci of spindle checkpoint proteins Bub1 and Mad2 were seen, and deletion of bub1 exacerbated the mitotic defects and the loss of cell viability that resulted from the loss of pfs2 function. Progression from G 1 into S phase following release from nitrogen starvation also required pfs2 + function. The product of the orthologous Saccharomyces cerevisiae gene PFS2 is a component of a multiprotein complex required for 3′-end cleavage and polyadenylation of pre-mRNAs and, in keeping with the conservation of this essential function, an S. pombe pfs2 mutant was defective in mRNA 3′-end processing. Mutations in pfs2 were suppressed by overexpression of the putative mRNA 3′-end cleavage factor Cft1. These data suggest unexpected links between mRNA 3′-end processing and chromosome replication and segregation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3