Functional Characterization of Flagellin Glycosylation in Campylobacter jejuni 81-176

Author:

Ewing Cheryl P.1,Andreishcheva Ekaterina1,Guerry Patricia1

Affiliation:

1. Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, Maryland 20910

Abstract

ABSTRACT The major flagellin of Campylobacter jejuni strain 81-176, FlaA, has been shown to be glycosylated at 19 serine or threonine sites, and this glycosylation is required for flagellar filament formation. Some enzymatic components of the glycosylation machinery of C. jejuni 81-176 are localized to the poles of the cell in an FlhF-independent manner. Flagellin glycosylation could be detected in flagellar mutants at multiple levels of the regulatory hierarchy, indicating that glycosylation occurs independently of the flagellar regulon. Mutants were constructed in which each of the 19 serine or threonines that are glycosylated in FlaA was converted to an alanine. Eleven of the 19 mutants displayed no observable phenotype, but the remaining 8 mutants had two distinct phenotypes. Five mutants (mutations S417A, S436A, S440A, S457A, and T481A) were fully motile but defective in autoagglutination (AAG). Three other mutants (mutations S425A, S454A, and S460A) were reduced in motility and synthesized truncated flagellar filaments. The data implicate certain glycans in mediating filament-filament interactions resulting in AAG and other glycans appear to be critical for structural subunit-subunit interactions within the filament.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3