Identification of Motility and Autoagglutination Campylobacter jejuni Mutants by Random Transposon Mutagenesis

Author:

Golden Neal J.1,Acheson David W. K.2

Affiliation:

1. Department of Immunology and Pathology, Tufts University, Boston, Massachusetts 02111

2. Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201

Abstract

ABSTRACT Campylobacter jejuni has been identified as the leading cause of acute bacterial diarrhea in the United States, yet compared with other enteric pathogens, considerably less is understood concerning the virulence factors of this human pathogen. A random in vivo transposon mutagenesis system was recently developed for the purpose of creating a library of C. jejuni transformants. A total of 1,065 C. jejuni transposon mutants were screened for their ability to swarm on motility agar plates and autoagglutinate in liquid cultures; 28 mutants were subsequently identified. The transposon insertion sites were obtained by using random-primed PCR, and the putative genes responsible for these phenotypes were identified. Of these mutants, all 28 were found to have diminished motility (0 to 86% that of the control). Seventeen motility mutants had insertions in genes with strong homology to functionally known motility and chemotaxis genes; however, 11 insertions were in genes of unknown function. Twenty motility mutants were unable to autoagglutinate, suggesting that the expression of flagella is correlated with autoagglutination (AAG). However, four mutants expressed wild-type levels of surface FlaA, as indicated by Western blot analysis, yet were unable to autoagglutinate (Cj1318, Cj1333, Cj1340c, and Cj1062). These results suggest that FlaA is necessary but not sufficient to mediate the AAG phenotype. Furthermore, two of the four AAG mutants (Cj1333 and Cj1062) were unable to invade INT-407 intestinal epithelial cells, as determined by a gentamicin treatment assay. These data identify novel genes important for motility, chemotaxis, and AAG and demonstrate their potential role in virulence.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3