Genes and Enzymes of Azetidine-2-Carboxylate Metabolism: Detoxification and Assimilation of an Antibiotic

Author:

Gross Carol1,Felsheim Roderick1,Wackett Lawrence P.1

Affiliation:

1. Department of Biochemistry, Molecular Biology and Biophysics and BioTechnology Institute, 140 Gortner Laboratory, University of Minnesota, St. Paul, Minnesota 55108

Abstract

ABSTRACT l -(−)-Azetidine-2-carboxylate (AC) is a toxic, natural product analog of l -proline. This study revealed the genes and biochemical strategy employed by Pseudomonas sp. strain A2C to detoxify and assimilate AC as its sole nitrogen source. The gene region from Pseudomona s sp. strain A2C required for detoxification was cloned into Escherichia coli and sequenced. The 7.0-kb region contained eight identifiable genes. Four encoded putative transporters or permeases for γ-amino acids or drugs. Another gene encoded a homolog of 2-haloacid dehalogenase (HAD). The encoded protein, denoted l -azetidine-2-carboxylate hydrolase (AC hydrolase), was highly overexpressed by subcloning. The AC hydrolase was shown to catalyze azetidine ring opening with the production of 2-hydroxy-4-aminobutyrate. AC hydrolase was further demonstrated to be a new hydrolytic member of the HAD superfamily by showing loss of activity upon changing aspartate-12, the conserved active site nucleophile in this family, to an alanine residue. The presence of a gene encoding a potential export chaperone protein, CsaA, adjacent to the AC hydrolase gene suggested that AC hydrolase might be found inside the periplasm in the native Pseudomonas strain. Periplasmic and cytoplasmic cell fractions from Pseudomonas sp. strain A2C were prepared. A higher specific activity for AC hydrolysis was found in the periplasmic fraction. Protein mass spectrometry further identified AC hydrolase and known periplasmic marker proteins in the periplasmic fraction. A model was proposed in which AC is hydrolyzed in the periplasm and the product of that reaction is transported into and further metabolized in the cytoplasm.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3