Mode of action of the toxic proline mimic azetidine 2-carboxylic acid in plants

Author:

Santos William Thives,Dwivedi Varun,Duong Ha Ngoc,Miederhoff Madison,Hoek Kathryn Vanden,Angelovici Ruthie,Schenck Craig A.ORCID

Abstract

AbstractPlants have an amazing capacity to outcompete neighboring organisms for space and resources. Toxic metabolites are major players in these interactions, which can have a broad range of effectiveness by targeting conserved molecular mechanisms, such as protein biosynthesis. However, lack of knowledge about defensive metabolite pathways, their modes of action, and resistance mechanisms limits our ability to manipulate these pathways for enhanced crop resilience. Nonproteogenic amino acids (NPAAs) are a structurally diverse class of metabolites with a variety of functions but are typically not incorporated during protein biosynthesis. Here, we investigate the mode of action of the NPAA azetidine-2-carboxylic acid (Aze), an analog of the amino acid proline (Pro). Using a combination of plate-based assays, metabolite feeding, metabolomics, and proteomics, we show that Aze inhibits the root growth of Arabidopsis and other plants. Aze-induced growth reduction was restored by supplementing L-, but not D-Pro, and non-targeted proteomics confirms that Aze is misincorporated for Pro during protein biosynthesis, specifically on cytosolically translated proteins. qRT-PCR analysis and free amino acid profiling show that the unfolded protein response is upregulated during Aze treatment implicating protein degradation of misfolded proteins. This study demonstrates the mode of action of Aze in plants and provides a foundation for engineering Aze production and tolerance in crops for enhanced resilience.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3