Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5′-Terminal AUG

Author:

Beck Heather J.1,Janssen Gary R.1

Affiliation:

1. Department of Microbiology, Miami University, Oxford, Ohio, USA

Abstract

ABSTRACT Alternative translation initiation mechanisms, distinct from the Shine-Dalgarno (SD) sequence-dependent mechanism, are more prevalent in bacteria than once anticipated. Translation of Escherichia coli ptrB instead requires an AUG triplet at the 5′ terminus of its mRNA. The 5′-terminal AUG (5′-uAUG) acts as a ribosomal recognition signal to attract ribosomes to the ptrB mRNA rather than functioning as an initiation codon to support translation of an upstream open reading frame. ptrB expression exhibits a stronger dependence on the 5′-uAUG than the predicted SD sequence; however, strengthening the predicted ptrB SD sequence relieves the necessity for the 5′-uAUG. Additional sequences within the ptrB 5′ untranslated region (5′-UTR) work cumulatively with the 5′-uAUG to control expression of the downstream ptrB coding sequence (CDS), thereby compensating for the weak SD sequence. Replacement of 5′-UTRs from other mRNAs with the ptrB 5′-UTR sequence showed a similar dependence on the 5′-uAUG for CDS expression, suggesting that the regulatory features contained within the ptrB 5′-UTR are sufficient to control the expression of other E. coli CDSs. Demonstration that the 5′-uAUG present on the ptrB leader mRNA is involved in ribosome binding and expression of the downstream ptrB CDS revealed a novel form of translational regulation. Due to the abundance of AUG triplets at the 5′ termini of E. coli mRNAs and the ability of ptrB 5′-UTR regulation to function independently of gene context, the regulatory effects of 5′-uAUGs on downstream CDSs may be widespread throughout the E. coli genome. IMPORTANCE As the field of synthetic biology continues to grow, a complete understanding of basic biological principles will be necessary. The increasing complexity of the synthetic systems highlights the gaps in our current knowledge of RNA regulation. This study demonstrates that there are novel ways to regulate canonical Shine-Dalgarno-led mRNAs in Escherichia coli , illustrating that our understanding of the fundamental processes of translation and RNA regulation is still incomplete. Even for E. coli , one of the most-studied model organisms, genes with translation initiation mechanisms that do not fit the canonical Shine-Dalgarno sequence paradigm are being revealed. Uncovering diverse mechanisms that control translational expression will allow synthetic biologists to finely tune protein production of desired gene products.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference55 articles.

1. Initiation of Protein Synthesis in Bacteria

2. The 3'-Terminal Sequence of Escherichia coli 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites

3. Translation initiation in Escherichia coli: sequences within the ribosome-binding site

4. Prokaryotic translation: the interactive pathway leading to initiation

5. Draper DE Gluick TC Schlax PJ . 1998. Pseduoknots, RNA folding and translational regulation, p 415–436. In Simons RW Grunberg-Manago M (ed), RNA structure and function, vol 35. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3