Transcription mapping of the Escherichia coli chromosome by electron microscopy

Author:

French S L1,Miller O L1

Affiliation:

1. Department of Biology, University of Virginia, Charlottesville 22901.

Abstract

The distinctive double Christmas tree morphology of rRNA operons as visualized by electron microscopy makes them easy to recognize in chromatin spreads from Escherichia coli. On the basis of the pattern of nascent transcripts on nearby transcription units and the relative distances of the operons from one another and the replication origin, we are now able to specifically identify five of the seven rRNA operons in E. coli. The use of rRNA operons as markers of both position and distance has resulted in the morphological mapping of a significant portion of the E. coli chromosome; over 600 kilobase pairs in the 84- to 90-min and 72-min regions can now be recognized. Since individual rRNA operons could be identified, direct comparisons could be made of their transcriptional activities. As judged by the densities of RNA polymerases along the operons, rrnA, rrnB, rrnC, rrnD, and rrnE were all transcribed at similar levels, with one RNA polymerase every 85 base pairs. The ability to recognize individual operons and specific regions of the chromosome allows direct comparisons of various genetic parameters.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3