Affiliation:
1. Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
2. The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
Abstract
Ribosomal subunits begin assembly during transcription of the ribosomal RNA (rRNA), when the rRNA begins to fold and associate with ribosomal proteins (RPs). In bacteria, the first steps of ribosome assembly depend upon recognition of the properly folded rRNA by primary assembly proteins such as S4, which nucleates assembly of the 16S 5′ domain. Recent evidence, however, suggests that initial recognition by S4 is delayed due to variable folding of the rRNA during transcription. Here, using single-molecule colocalization co-transcriptional assembly (smCoCoA), we show that the late-binding RP S12 specifically promotes the association of S4 with the pre-16S rRNA during transcription, thereby accelerating nucleation of 30S ribosome assembly. Order of addition experiments suggest that S12 helps chaperone the rRNA during transcription, particularly near the S4 binding site. S12 interacts transiently with the rRNA during transcription and, consequently, a high concentration is required for its chaperone activity. These results support a model in which late-binding RPs moonlight as RNA chaperones during transcription in order to facilitate rapid assembly.
Funder
National Institute of General Medical Sciences
Subject
Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献