Loss of a Tyrosine-Dependent Trafficking Motif in the Simian Immunodeficiency Virus Envelope Cytoplasmic Tail Spares Mucosal CD4 Cells but Does Not Prevent Disease Progression

Author:

Breed Matthew W.,Jordan Andrea P. O.,Aye Pyone P.,Lichtveld Cornelis F.,Midkiff Cecily C.,Schiro Faith R.,Haggarty Beth S.,Sugimoto Chie,Alvarez Xavier,Sandler Netanya G.,Douek Daniel C.,Kuroda Marcelo J.,Pahar Bapi,Piatak Michael,Lifson Jeffrey D.,Keele Brandon F.,Hoxie James A.,Lackner Andrew A.

Abstract

ABSTRACTA hallmark of pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections is the rapid and near-complete depletion of mucosal CD4+T lymphocytes from the gastrointestinal tract. Loss of these cells and disruption of epithelial barrier function are associated with microbial translocation, which has been proposed to drive chronic systemic immune activation and disease progression. Here, we evaluate in rhesus macaques a novel attenuated variant of pathogenic SIVmac239, termed ΔGY, which contains a deletion of a Tyr and a proximal Gly from a highly conserved YxxØ trafficking motif in the envelope cytoplasmic tail. Compared to SIVmac239, ΔGY established a comparable acute peak of viremia but only transiently infected lamina propria and caused little or no acute depletion of mucosal CD4+T cells and no detectable microbial translocation. Nonetheless, these animals developed T-cell activation and declining peripheral blood CD4+T cells and ultimately progressed with clinical or pathological features of AIDS. ΔGY-infected animals also showed no infection of macrophages or central nervous system tissues even in late-stage disease. Although the ΔGY mutation persisted, novel mutations evolved, including the formation of new YxxØ motifs in two of four animals. These findings indicate that disruption of this trafficking motif by the ΔGY mutation leads to a striking alteration in anatomic distribution of virus with sparing of lamina propria and a lack of microbial translocation. Because these animals exhibited wild-type levels of acute viremia and immune activation, our findings indicate that these pathological events are dissociable and that immune activation unrelated to gut damage can be sufficient for the development of AIDS.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference90 articles.

1. Generalized immune activation and innate immune responses in simian immunodeficiency virus infection;Bosinger;Curr. Opin. HIV AIDS,2011

2. Microbial translocation is a cause of systemic immune activation in chronic HIV infection;Brenchley;Nat. Med.,2006

3. Nonprogressive and progressive primate immunodeficiency lentivirus infections;Brenchley;Immunity,2010

4. Natural SIV hosts: showing AIDS the door;Chahroudi;Science,2012

5. HIV disease progression: immune activation, microbes, and a leaky gut;Douek;Top. HIV Med.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3