MtrR Modulates rpoH Expression and Levels of Antimicrobial Resistance in Neisseria gonorrhoeae

Author:

Folster Jason P.12,Johnson Paul J. T.12,Jackson Lydgia34,Dhulipali Vijaya12,Dyer David W.34,Shafer William M.12

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322

2. Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, Georgia 30033

3. Laboratory for Genomics and Bioinformatics

4. Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104

Abstract

ABSTRACT The MtrR transcriptional-regulatory protein is known to repress transcription of the mtrCDE operon, which encodes a multidrug efflux pump possessed by Neisseria gonorrhoeae that is important in the ability of gonococci to resist certain hydrophobic antibiotics, detergents, dyes, and host-derived antimicrobials. In order to determine whether MtrR can exert regulatory action on other gonococcal genes, we performed a whole-genome microarray analysis using total RNA extracted from actively growing broth cultures of isogenic MtrR-positive and MtrR-negative gonococci. We determined that, at a minimum, 69 genes are directly or indirectly subject to MtrR control, with 47 being MtrR repressed and 22 being MtrR activated. rpoH , which encodes the general stress response sigma factor RpoH (sigma 32), was found by DNA-binding studies to be directly repressed by MtrR, as it was found to bind to a DNA sequence upstream of rpoH that included sites within the rpoH promoter. MtrR also repressed the expression of certain RpoH-regulated genes, but this regulation was likely indirect and a reflection of MtrR control of rpoH expression. Inducible expression of MtrR was found to repress rpoH expression and to increase gonococcal susceptibility to hydrogen peroxide (H 2 O 2 ) and an antibiotic (erythromycin) recognized by the MtrC-MtrD-MtrE efflux pump system. We propose that, apart from its ability to control the expression of the mtrCDE -encoded efflux pump operon and, as a consequence, levels of gonococcal resistance to host antimicrobials (e.g., antimicrobial peptides) recognized by the efflux pump, the ability of MtrR to regulate the expression levels of rpoH and RpoH-regulated genes also modulates levels of gonococcal susceptibility to H 2 O 2 .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3