Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin

Author:

Roberts P C1,Garten W1,Klenk H D1

Affiliation:

1. Institut für Virologie, Philipps-Universität Marburg, Germany.

Abstract

The role of three N-linked glycans which are conserved among various hemagglutinin (HA) subtypes of influenza A viruses was investigated by eliminating the conserved glycosylation (cg) sites at asparagine residues 12 (cg1), 28 (cg2), and 478 (cg3) by site-directed mutagenesis. An additional mutant was constructed by eliminating the cg3 site and introducing a novel site 4 amino acids away, at position 482. Expression of the altered HA proteins in eukaryotic cells by a panel of recombinant vaccinia viruses revealed that rates and efficiency of intracellular transport of HA are dependent upon both the number of conserved N-linked oligosaccharides and their respective positions on the polypeptide backbone. Glycosylation at two of the three sites was sufficient for maintenance of transport of the HA protein. Conserved glycosylation at either the cg1 or cg2 site alone also promoted efficient transport of HA. However, the rates of transport of these mutants were significantly reduced compared with the wild-type protein or single-site mutants of HA. The transport of HA proteins lacking all three conserved sites or both amino-terminally located sites was temperature sensitive, implying that a polypeptide folding step had been affected. Analysis of trimer assembly by these mutants indicated that the presence of a single oligosaccharide in the stem domain of the HA molecule plays an important role in preventing aggregation of molecules in the endoplasmic reticulum, possibly by maintaining the hydrophilic properties of this domain. The conformational change observed after loss of all three conserved oligosaccharides also resulted in exposure of a normally mannose-rich oligosaccharide at the tip of the large stem helix that allowed its conversion to a complex type of structure. Evidence was also obtained suggesting that carbohydrate-carbohydrate interactions between neighboring oligosaccharides at positions 12 and 28 influence the accessibility of the cg2 oligosaccharide for processing enzymes. We also showed that terminal glycosylation of the cg3 oligosaccharide is site specific, since shifting of this site 4 amino acids away, to position 482, yielded an oligosaccharide that was arrested in the mannose-rich form. In conclusion, carbohydrates at conserved positions not only act synergistically by promoting and stabilizing a conformation compatible with transport, they also enhance trimerization and/or folding rates of the HA protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3