Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage.

Author:

Amara J F1,Lederkremer G1,Lodish H F1

Affiliation:

1. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142.

Abstract

The human asialoglycoprotein receptor is a heterooligomer of the two homologous subunits H1 and H2. As occurs for other oligomeric receptors, not all of the newly made subunits are assembled in the RER into oligomers and some of each chain is degraded. We studied the degradation of the unassembled H2 subunit in fibroblasts that only express H2 (45,000 mol wt) and degrade all of it. After a 30 min lag, H2 is degraded with a half-life of 30 min. We identified a 35-kD intermediate in H2 degradation; it is the COOH-terminal, exoplasmic domain of H2. After a 90-min chase, all remaining intact H2 and the 35-kD fragment were endoglycosidase H sensitive, suggesting that the cleavage generating the 35-kD intermediate occurs without translocation to the medial Golgi compartment. Treatment of cells with leupeptin, chloroquine, or NH4Cl did not affect H2 degradation. Monensin slowed but did not block degradation. Incubation at 18-20 degrees C slowed the degradation dramatically and caused an increase in intracellular H2, suggesting that a membrane trafficking event occurs before H2 is degraded. Immunofluorescence microscopy of cells with or without an 18 degrees C preincubation showed a colocalization of H2 with the ER and not with the Golgi complex. We conclude that H2 is not degraded in lysosomes and never reaches the medial Golgi compartment in an intact form, but rather degradation is initiated in a pre-Golgi compartment, possibly part of the ER. The 35-kD fragment of H2 may define an initial proteolytic cleavage in the ER.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3