Adsorption of Amikacin, a Significant Mechanism of Elimination by Hemofiltration

Author:

Tian Qi1,Gomersall Charles D.1,Ip Margaret2,Tan Perpetua E.1,Joynt Gavin M.1,Choi Gordon Y. S.1

Affiliation:

1. Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong

2. Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong

Abstract

ABSTRACT We used an in vitro model of continuous venovenous hemofiltration (CVVH) to characterize amikacin adsorption by polyacrylonitrile (PAN) and polyamide filters. A blood-crystalloid mixture dosed with amikacin was pumped from a reservoir through a hemofiltration circuit and back to the reservoir. All ultrafiltrate was also returned to the reservoir. The level of adsorption was calculated from the fall in the amikacin concentration. The dose and the initial concentration of amikacin were varied, as were the pH, the type of hemofilter, and the hemofilter surface area. The reversibility of adsorption and the effect of repeated dosing were also studied. The level of adsorption by 0.6-m 2 PAN filters was significantly greater than that by 0.6-m 2 polyamide filters. Adsorption was increased by increasing the dose of amikacin even when the initial concentration was unchanged. It was unaffected by the pH (pH 6.8 or 7.4) or the hemofilter surface area (0.6 m 2 or 0.9 m 2 ). Repeated doses of amikacin resulted in further adsorption. In a saturation experiment, the maximum adsorptive capacity of 0.6-m 2 PAN hemofilters was at least 546.9 mg (range, 427.6 to 577.5 mg). The adsorption of amikacin by hemofilters is irreversible and was associated with the dose and the hemofilter material but not the hemofilter surface area. Close monitoring of peak amikacin levels should be considered for patients receiving CVVH with PAN hemofilters.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3