Poor removal of tedizolid during continuous hemodiafiltration: experiments using an in vitro continuous hemodiafiltration model

Author:

Yoshikawa Satoshi,Yoshikawa Shinichi,Sato Akira,Matsumoto Tsukasa

Abstract

Abstract Background Tedizolid is an oxazolidinone anti-MRSA drug with included in the National Health Insurance Drug Price List in 2018. The effect of hemodialysis on tedizolid phosphate concentrations has been reported; pre-dialysis concentrations decreased by 10% compared to post- dialysis concentrations. However, the material of the dialysis membrane remains unknown. In addition, there have been no reports on the effects of continuous hemodiafiltration. In this study, we investigated the effects of continuous hemodiafiltration on tedizolid using two types of dialysis membranes made of different materials. Methods The adsorption of tedizolid, linezolid, and vancomycin to two different dialysis membranes was investigated, and the clearance of each drug was calculated by experiments using an in vitro continuous hemodiafiltration model. Results The adsorption of tedizolid, linezolid, and vancomycin on the dialysis membranes was examined, and no adsorption was observed. Experimental results from the continuous hemodiafiltration model showed that linezolid and vancomycin concentrations decreased over time: after two hours, the respective decreases were 26.48 ± 7.14% and 28.51 ± 2.32% for polysulfone membranes, respectively. The decrease was 23.57 ± 4.95% and 28.73 ± 5.13% for the polymethylmethacrylate membranes, respectively. These results suggested that linezolid and vancomycin were eliminated by continuous hemodiafiltration. In contrast, tedizolid phosphate and tedizolid concentrations decreased slightly in the polysulfone and polymethylmethacrylate membranes. The decrease in concentrations were 2.10 ± 0.77% and 2.97 ± 0.60% for the polysulfone membranes, respectively. For the polymethylmethacrylate membranes, the decrease in concentration were 2.01 ± 0.88% and 1.73 ± 0.27%, respectively. Conclusion These results suggested that tedizolid should not be considered for dose control during continuous hemodiafiltration.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology (nursing)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3