Affiliation:
1. Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801
2. Energy Biosciences Institute, University of Illinois, Urbana, Illinois 61801
3. Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
4. Department of Microbiology, University of Illinois, Urbana, Illinois 61801
Abstract
ABSTRACT
Ruminococcus albus
8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of
R. albus
revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from
R. albus
, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in
Escherichia coli
, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献