Pathogenic Potential of Emergent Sorbitol-Fermenting Escherichia coli O157:NM

Author:

Rosser Tracy1,Dransfield Tracy1,Allison Lesley2,Hanson Mary2,Holden Nicola1,Evans Judith3,Naylor Stuart3,La Ragione Roberto4,Low J. Christopher3,Gally David L.1

Affiliation:

1. ZAP Lab, Division of Immunity and Infection, The Roslin Institute and R(D)SVS, Chancellor's Building, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom

2. Scottish E. coli O157 Reference Laboratory, Department of Clinical Microbiology, Western General Hospital, Edinburgh EH4 2XU, United Kingdom

3. Animal Health Group, Research Division, SAC, Kings Buildings, Edinburgh EH9 3JG, United Kingdom

4. Department of Food and Environmental Safety, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone KT15 3NB, United Kingdom

Abstract

ABSTRACT Non-sorbitol-fermenting (NSF) Escherichia coli O157:H7 is the primary Shiga toxin-producing E. coli (STEC) serotype associated with human infection. Since 1988, sorbitol-fermenting (SF) STEC O157:NM strains have emerged and have been associated with a higher incidence of progression to hemolytic-uremic syndrome (HUS) than NSF STEC O157:H7. This study investigated bacterial factors that may account for the increased pathogenic potential of SF STEC O157:NM. While no evidence of toxin or toxin expression differences between the two O157 groups was found, the SF STEC O157:NM strains adhered at significantly higher levels to a human colonic cell line. Under the conditions tested, curli were shown to be the main factor responsible for the increased adherence to Caco-2 cells. Notably, 52 of 66 (79%) European SF STEC O157:NM strains tested bound Congo red at 37 ο C and this correlated with curli expression. In a subset of strains, curli expression was due to increased expression from the csgBAC promoter that was not always a consequence of increased csgD expression. The capacity of SF STEC O157:NM strains to express curli at 37 ο C may have relevance to the epidemiology of human infections as curliated strains could promote higher levels of colonization and inflammation in the human intestine. In turn, this could lead to increased toxin exposure and an increased likelihood of progression to HUS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3