In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units

Author:

Gall Daniel L.1,Kontur Wayne S.1,Lan Wu12,Kim Hoon12,Li Yanding12,Ralph John12,Donohue Timothy J.13ORCID,Noguera Daniel R.14ORCID

Affiliation:

1. Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA

2. Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA

3. Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA

4. Department of Civil & Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA

Abstract

ABSTRACT New environmentally sound technologies are needed to derive valuable compounds from renewable resources. Lignin, an abundant polymer in terrestrial plants comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units, is a potential natural source of aromatic compounds. In addition, the plant secondary metabolite tricin is a recently discovered and moderately abundant flavonoid in grasses. The most prevalent interunit linkage between guaiacyl, syringyl, and tricin units is the β-ether linkage. Previous studies have shown that bacterial β-etherase pathway enzymes catalyze glutathione-dependent cleavage of β-ether bonds in dimeric β-ether lignin model compounds. To date, however, it remains unclear whether the known β-etherase enzymes are active on lignin polymers. Here we report on enzymes that catalyze β-ether cleavage from bona fide lignin, under conditions that recycle the cosubstrates NAD + and glutathione. Guaiacyl, syringyl, and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results demonstrate an in vitro enzymatic system that can recycle cosubstrates while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin. IMPORTANCE Many bacteria are predicted to contain enzymes that could convert renewable carbon sources into substitutes for compounds that are derived from petroleum. The β-etherase pathway present in sphingomonad bacteria could cleave the abundant β–O–4-aryl ether bonds in plant lignin, releasing a biobased source of aromatic compounds for the chemical industry. However, the activity of these enzymes on the complex aromatic oligomers found in plant lignin is unknown. Here we demonstrate biodegradation of lignin polymers using a minimal set of β-etherase pathway enzymes, the ability to recycle needed cofactors (glutathione and NAD + ) in vitro , and the release of guaiacyl, syringyl, and tricin as depolymerized products from lignin. These observations provide critical evidence for the use and future optimization of these bacterial β-etherase pathway enzymes for industrial-level biotechnological applications designed to derive high-value monomeric aromatic compounds from lignin.

Funder

Department of Energy, Office of Science

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference41 articles.

1. Higuchi T. 1980. Lignin structure and morphological distribution in plant cell walls, p 1–20. In Kirk TK, Higuchi T, Chang H (ed), Lignin biodegradation: microbiology, chemistry and potential applications, vol I. CRC Press, Boca Raton, FL.

2. Lignin: Occurrence, Biogenesis and Biodegradation

3. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents

4. Biochemical transformation of lignin for deriving valued commodities from lignocellulose

5. Lignin chemistry?past, present and future

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3