Engineering Novosphingobium aromaticivorans to produce cis,cis -muconic acid from biomass aromatics

Author:

Vilbert Avery C.12ORCID,Kontur Wayne S.12,Gille Derek12,Noguera Daniel R.123ORCID,Donohue Timothy J.124ORCID

Affiliation:

1. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA

2. Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA

3. Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA

4. Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

ABSTRACT The platform chemical cis,cis- muconic acid ( cc MA) provides facile access to a number of monomers used in the synthesis of commercial plastics. It is also a metabolic intermediate in the β-ketoadipic acid pathway of many bacteria and, therefore, a current target for microbial production from abundant renewable resources via metabolic engineering. This study investigates Novosphingobium aromaticivorans DSM12444 as a chassis for the production of cc MA from biomass aromatics. The N. aromaticivorans genome predicts that it encodes a previously uncharacterized protocatechuic acid (PCA) decarboxylase and a catechol 1,2-dioxygenase, which would be necessary for the conversion of aromatic metabolic intermediates to cc MA. This study confirmed the activity of these two enzymes in vitro and compared their activity to ones that have been previously characterized and used in cc MA production. From these results, we generated one strain that is completely derived from native genes and a second that contains genes previously used in microbial engineering synthesis of this compound. Both of these strains exhibited stoichiometric production of cc MA from PCA and produced greater than 100% yield of cc MA from the aromatic monomers that were identified in liquor derived from alkaline pretreated biomass. Our results show that a strain completely derived from native genes and one containing homologs from other hosts are both capable of stoichiometric production of cc MA from biomass aromatics. Overall, this work combines previously unknown aspects of aromatic metabolism in N. aromaticivorans and the genetic tractability of this organism to generate strains that produce cc MA from deconstructed biomass. IMPORTANCE The production of commodity chemicals from renewable resources is an important goal toward increasing the environmental and economic sustainability of industrial processes. The aromatics in plant biomass are an underutilized and abundant renewable resource for the production of valuable chemicals. However, due to the chemical composition of plant biomass, many deconstruction methods generate a heterogeneous mixture of aromatics, thus making it difficult to extract valuable chemicals using current methods. Therefore, recent efforts have focused on harnessing the pathways of microorganisms to convert a diverse set of aromatics into a single product. Novosphingobium aromaticivorans DSM12444 has the native ability to metabolize a wide range of aromatics and, thus, is a potential chassis for conversion of these abundant compounds to commodity chemicals. This study reports on new features of N. aromaticivorans that can be used to produce the commodity chemical cis,cis -muconic acid from renewable and abundant biomass aromatics.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3