Identification and Phenotypic Characterization of a β-Lactam-Dependent, Methicillin-Resistant Staphylococcus aureus Strain

Author:

Goldstein Fred1,Perutka Jiri2,Cuirolo Arabela2,Plata Konrad23,Faccone Diego2,Morris Joanne2,Sournia Aude1,Kitzis Marie Dominique1,Ly Aicha1,Archer Gordon2,Rosato Adriana E.2

Affiliation:

1. Foundation Hospital Saint Joseph, 185 rue Raymond Losserand, 75014, Paris, France

2. Division of Infectious Diseases, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298

3. Department of Molecular Biology, University of Gdansk, Kladki 24, 84-822 Gdansk, Poland

Abstract

ABSTRACT Methicillin resistance in Staphylococcus aureus is primarily mediated by the acquired penicillin-binding protein PBP 2a, which is encoded by mecA . PBP 2a acts together with native PBP 2 to mediate oxacillin resistance by contributing complementary transpeptidase and transglycosylase activities, respectively. In this study, we have investigated a phenotype of β-lactam dependence in a clinical methicillin-resistant S. aureus strain (strain 2884D) obtained by in vitro selection with ceftobiprole. 28884D, which grew very poorly in blood agar, required the presence of the β-lactam antibiotics to grow. On the basis of this observation, we hypothesized that a gene or genes essential for growth were dependent on oxacillin induction. Identification and analysis of genes regulated by oxacillin were performed by both real-time reverse transcription-PCR and spotted microarray analysis. We found that mecA was constitutively expressed in strain 2884D and that the constitutive expression resulted from perturbations in the two systems involved in its regulation, i.e., MecI/MecR1 (staphylococcal chromosome cassette mec type I) and BlaI/BlaR1 (nonfunctional penicillinase operon). PBP 2 appeared to be poorly induced by oxacillin in 2884D. Further analysis of the PBP 2 two-component VraSR regulatory system showed that it was nonfunctional, accounting for the lack of response to oxacillin. Together, these results support the notion that limited PBP 2 availability may have led 2884D to become dependent on oxacillin-mediated mecA induction as a required survival mechanism.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3