Dissemination among staphylococci of DNA sequences associated with methicillin resistance

Author:

Archer G L1,Niemeyer D M1,Thanassi J A1,Pucci M J1

Affiliation:

1. Department of Microbiology/Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0049.

Abstract

DNA probes consisting of pUC19 containing cloned Staphylococcus aureus chromosomal fragments were constructed from two methicillin-resistant S. aureus strains with different DNA sequences 5' to mecA, the gene that mediates methicillin resistance. The probe from one strain, BMS1, contained a portion of the regulatory sequences (the terminal 641 bp of mecR1 and all of mecI) associated with the induction and repression of mecA transcription (pGO195). The second probe, from strain COL (pGO198), contained DNA not found in strain BMS1. This DNA was within the sequences added at the site of a mecR1 deletion. Genomic digests of 14 S. aureus isolates recovered between 1961 and 1969 all hybridized with pGO198. In contrast, 78% (36 of 46) of the S. aureus organisms isolated since 1988 hybridized with pGO195 but not with pGO198; the remainder hybridized with pGO198. No S. aureus isolates hybridized with both probes. Staphylococcus epidermidis digests hybridized with pGO198 (46%), pGO195 (14%), or both probes (35%); all 20 Staphylococcus haemolyticus isolates hybridized with pGO198. The restriction fragment length polymorphism patterns of all pGO198-hybridizing regions in S. aureus were identical to those in strain COL. In addition, the mecR1 deletion junction nucleotide sequences of eight S. aureus and six S. epidermidis isolates were identical. However, 21 of 23 S. epidermidis and all 20 S. haemolyticus isolates had from 5 to more than 20 additional chromosomal bands that hybridized with pGO198; none of 21 S. aureus isolates had additional hybridizing bands. These data suggest that the additional DNA responsible for the mecR1 deletion was part of a repetitive, and possibly mobile, element resident in coagulase-negative staphylococci but not in S. aureus. These data also support a hypothesis that the deletion event occurred in a coagulase-negative staphylococcus with subsequent acquisition of the interrupted sequences by S. aureus.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference25 articles.

1. Archer G. L. Unpublished data.

2. Detection of methicillin resistance in staphylococci by using a DNA probe;Archer G. L.;Antimicrob. Agents Chemother.,1990

3. Archer G. L. and M. J. Pucci. Unpublished data.

4. Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA;Beck W. D.;J. Bacteriol.,1986

5. Methicillin-resistant Staphylococcus aureus;Brumfitt W.;N. Engl. J. Med.,1989

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3