Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus

Author:

Gerard G F,Grandgenett D P

Abstract

Two RNase H (RNA-DNA hybrid ribonucleotidohydrolase, EC 3.1.4.34) activities separable by Sephadex G-100 gel filtration were identified in lysates of Moloney murine sarcoma-leukemia virus (MSV). The larger enzyme, which we have called RNase H-I, represented about 10% of the RNase H activity in the virion. RNase H-I (i) copurified with RNA-directed DNA polymerase from the virus, (ii) had a sedimentation coefficient of 4.4S (corresponds to an apparent mol wt of 70,000), (iii) required Mn-2+ (2 mM optimum) for activity with a [3-h]poly(A)-poly(dT) substrate, (iv) eluted from phosphocellulose at 0.2 M KC1, and (v) degraded [3-H]poly(A)-poly(dT) and [3-H]poly(C)-poly(dG) at approximately equal rates. The smaller enzyme, designated RNase H-II, which represented the majority of the RNase H activity in the virus preparation, was shown to be different since it (i) had no detectable, associated DNA polymerase activity, (ii) had a sedmimentation coefficient of 2.6S (corresponds to an apparent mol wt of 30,000), (iii) preferred Mg-2+ (10 to 15 mM optimum) over Mn-2+ (5 to 10 mM optimum) 2.5-fold for the degradation of [3-H]poly(A)-poly(dT), and (iv) degraded [3-H]poly(A)-poly(dT) 6 and 60 times faster than [3-H]poly(C)-poly(dG) in the presence of Mn-2+ and Mg-2+, respectively. Moloney MSV DNA polymerase (RNase H-I), purified by Sephadex G-100 gel filtration followed by phosphocellulose, poly(A)-oligo(dT)-cellulose, and DEAE-cellulose chromatography, transcribed heteropolymeric regions of avian myeloblastosis virus 70S RNA at a rate comparable to avian myeloblastosis virus DNA polymerase purified by the same procedure.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3