Transcriptional Regulation of the Cellobiose Operon of Streptococcus mutans

Author:

Zeng Lin1,Burne Robert A.1

Affiliation:

1. Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610

Abstract

ABSTRACT The ability of Streptococcus mutans to catabolize cellobiose, a β-linked glucoside generated during the hydrolysis of cellulose, is shown to be regulated by a transcriptional regulator, CelR, which is encoded by an operon with a phospho-β-glucosidase (CelA) and a cellobiose-specific sugar p hospho t ransferase s ystem (PTS) permease (EII Cel ). The roles of CelR, EII Cel components, and certain fructose/mannose-PTS permeases in the transcriptional regulation of the cel locus were analyzed. The results revealed that (i) the celA and celB (EIIB Cel ) gene promoters require CelR for transcriptional activation in response to cellobiose, but read-through from the celA promoter contributes to expression of the EII Cel genes; (ii) the EII Cel subunits were required for growth on cellobiose and for transcriptional activation of the cel genes; (iii) CcpA plays little direct role in catabolite repression of the cel regulon, but loss of specific PTS permeases alleviated repression of cel genes in the presence of preferred carbohydrates; and (iv) glucose could induce transcription of the cel regulon when transported by EII Cel . CelR derivatives containing amino acid substitutions for five conserved histidine residues in two PTS regulatory domains and an EIIA-like domain also provided important insights regarding the function of this regulator. Based on these data, a model for the involvement of PTS permeases and the general PTS proteins enzyme I and HPr was developed that reveals a critical role for the PTS in CcpA-independent catabolite repression and induction of cel gene expression in S. mutans .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3