Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions betweenS. mutansand several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors ofS. mutansin coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures ofS. mutansandStreptococcus oraliswith and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, withS. mutansupregulating carbohydrate uptake and utilization pathways whileS. oralisupregulated genome features related to peptide uptake and glycan foraging.S. mutansalso upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献