Genomic Comparison of PE and PPE Genes in the Mycobacterium avium Complex

Author:

Mackenzie Nick1,Alexander David C.2,Turenne Christine Y.2,Behr Marcel A.2,De Buck Jeroen M.1

Affiliation:

1. Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada

2. Division of Infectious Diseases and Medical Microbiology, McGill University Health Center, Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada

Abstract

ABSTRACT The Mycobacterium avium complex (MAC) comprises genomically similar but phenotypically divergent bacteria that inhabit diverse environments and that cause disease in different hosts. In this study, a whole-genome approach was used to examine the polymorphic PE (Pro-Glu) and PPE (Pro-Pro-Glu) gene families, implicated in immunostimulation and virulence. The four major groups of MAC organisms were examined, including the newly sequenced type strains of M. intracellulare and M. avium subsp. avium , plus M. avium subsp. paratuberculosis and M. avium subsp. hominissuis , for the purpose of finding genetic differences that could be exploited to design diagnostic tests specific to these groups and that could help explain their divergence in pathogenesis and host specificity. Unique and missing PPE genes were found in all MAC members except M. avium subsp. avium . Only M. intracellulare had a unique PE gene. Apart from this, most PE and PPE sequences were conserved, with average nucleotide sequence identities of 99.1 and 98.1%, respectively, among the M. avium subspecies, but only 82.9 and 79.7% identities with the PE and PPE sequences of M. intracellulare , respectively. A detailed analysis of the amino acid sequences was performed between M. avium subsp. paratuberculosis and M. avium subsp. hominissuis . Most differences were detected in the PPE proteins, with amino acid substitutions and frame shifts leading to unique amino acid sequences. In conclusion, several unique PPE proteins were identified in MAC organisms next to numerous polymorphisms in both the PE and PPE gene families. These substantial differences could help explain the divergence in phenotypes within the MAC and could lead to diagnostic tests with better discriminatory abilities.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3