Expression and Immunogenicity of Proteins Encoded by Sequences Specific to Mycobacterium avium subsp. paratuberculosis

Author:

Bannantine John P.1,Hansen Janis K.1,Paustian Michael L.1,Amonsin Alongkorn2,Li Ling-Ling2,Stabel Judith R.1,Kapur Vivek2

Affiliation:

1. National Animal Disease Center, USDA Agricultural Research Service, Ames, Iowa 50010

2. Biomedical Genomics Center and Departments of Microbiology and Veterinary Pathobiology, University of Minnesota, Minneapolis, Minnesota 55488

Abstract

ABSTRACT The development of immunoassays specific for the diagnosis of Johne's disease in cattle requires antigens specific to Mycobacterium avium subsp. paratuberculosis . However, because of genetic similarity to other mycobacteria comprising the M. avium complex, no such antigens have been found. Through a comparative genomics approach, 21 potential coding sequences of M. avium subsp. paratuberculosis that are not represented in any other mycobacterial species tested ( n = 9) were previously identified (J. P. Bannantine, E. Baechler, Q. Zhang, L. Li, and V. Kapur, J. Clin. Microbiol. 40: 1303-1310, 2002). Here we describe the cloning, heterologous expression, and antigenic analysis of these M. avium subsp. paratuberculosis -specific sequences in Escherichia coli . Nucleotide sequences representing each unique predicted coding region were amplified and cloned into two different E. coli expression vectors encoding polyhistidine or maltose binding protein (MBP) affinity purification tags. All 21 of the MBP fusion proteins were successfully purified under denaturing conditions and were evaluated in immunoblotting studies with sera from rabbits and mice immunized with M. avium subsp. paratuberculosis . These studies showed that 5 of the 21 gene products are produced by M. avium subsp. paratuberculosis and are antigenic. Immunoblot analysis with a panel of sera from 9 healthy cattle and 10 cattle with clinical disease shows that the same five M. avium subsp. paratuberculosis proteins are also detected within the context of infection. Collectively, these studies have used a genomic approach to identify novel M. avium subsp. paratuberculosis antigens that are not present in any other mycobacteria. These findings may have a major impact on improved diagnostics for Johne's disease.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3