Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12

Author:

Compan I1,Touati D1

Affiliation:

1. Institut Jacques Monod, Centre National de la Recherche Scientifique, Université Paris 7, France.

Abstract

Transcription of the sodA gene of Escherichia coli, which encodes manganese superoxide dismutase, is governed by six global regulators: the product of the soxRS locus (superoxide response) and mutated alleles of the soxQ locus (such as cfxB) act as activators; the products of the fur (ferric uptake regulation), arcA (aerobic regulation control), and fnr (fumarate nitrate reductase) genes and the integration host factor (IHF) negatively regulate sodA. The action of these effectors on the sodA promoter was investigated by using chromosomal sodA-lacZ operon fusions with intact or deleted promoters, different environmental conditions, and strains carrying different combinations of null mutations in the effector genes. The data allow us to assign target regions in the sodA promoter for activation by SoxRS and CfxB and for repression by Fur and ArcA. In aerobiosis, activation of sodA transcription by SoxRS was compatible with CfxB activation or Fur repression, whereas cfxB and fur controls were mutually exclusive. Repression by Fnr appeared, at least in part, to be ArcA dependent. IHF enhanced aerobic Fur repression, and in the absence of Fur, it enhanced anaerobic repression by ArcA. The DNA targets for Fur (encompassing the -35 region) and ArcA (from and downstream of the -35 region) appear to overlap, suggesting that Fur and ArcA repressions are mutually exclusive. Fur (in response to the iron pool) or ArcA, acting with Fnr and IHF (in response to the redox state of the cells), can block anaerobic sodA-lacZ expression with about equivalent efficiencies. The possible biological significance of this result is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3