Mycobacterium tuberculosis Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates

Author:

Zhang Susan1,Burns-Huang Kristin E.1,Janssen Guido V.2,Li Huilin3,Ovaa Huib2,Hedstrom Lizbeth4,Darwin K. Heran1

Affiliation:

1. Department of Microbiology, New York University School of Medicine, New York, New York, USA

2. Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands

3. Van Andel Research Institute, Grand Rapids, Michigan, USA

4. Departments of Biology and Chemistry, Brandeis University, Waltham, Massachusetts, USA

Abstract

ABSTRACT The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M. tuberculosis , an observation that led us to hypothesize that PafA may need alternative sources of Pup. Here, we show that PafA can move Pup from one proteasome substrate, inositol 1-phosphate synthetase (Ino1), to two different proteins, malonyl coenzyme A (CoA)-acyl carrier protein transacylase (FabD) and lonely guy (Log). This apparent “transpupylation” reaction required a previously unrecognized depupylase activity in PafA, and, surprisingly, this depupylase activity was much more efficient than the activity of the dedicated depupylase Dop (deamidase of Pup). Thus, PafA can potentially use both newly synthesized Pup and recycled Pup to doom proteins for degradation. IMPORTANCE Unlike eukaryotes, which contain hundreds of ubiquitin ligases, Pup-containing bacteria appear to have a single ligase to pupylate dozens if not hundreds of different proteins. The observation that PafA can depupylate and transpupylate in vitro offers new insight into how protein stability is regulated in proteasome-bearing bacteria. Importantly, PafA and the dedicated depupylase Dop are each required for the full virulence of Mycobacterium tuberculosis . Thus, inhibition of both enzymes may be extremely attractive for the development of therapeutics against tuberculosis.

Funder

HHS | National Institutes of Health

Burroughs Wellcome Fund

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3