In silico Identification of Putative Drug Targets in Mycobacterium ulcerans Virulence Proteins

Author:

Saxena Aditya1ORCID,Mohinani Taruna23ORCID,Singh Shoor Vir2ORCID,Pathak Amita4

Affiliation:

1. Department of Computer Engineering & Applications, GLA University, Mathura (U.P.) India

2. Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura (U.P.) India

3. Department of Botany, Babu Shivnath Agrawal College, Mathura (U.P.) India

4. Department of Chemistry, IIT Delhi, Hauz Khas, New Delhi, India

Abstract

Background: Buruli ulcer (BU), caused by Mycobacterium ulcerans is a neglected tropical disease characterized by necrotic skin lesions. Antibiotic therapy and excision of the lesions are the treatments for this chronic disease. During the management of the disease, the emergence of drug resistance in these bacilli is a major challenge. Therefore, there is a need to identify new drug targets against this important pathogen. Objective: The study aimed to investigate novel drug targets exploring virulence factors of M. ulcerans by in silico analysis. Method: Virulence proteins encoded by the chromosome of Mycobacterium ulcerans strain Agy99 were retrieved and analyzed for their cellular localization, human non-homology and essentiality. Further, proteins were analyzed for their physio-chemical characterization, drug resistance analysis, protein interaction analysis, metabolic pathway prediction, and druggability prediction by various databases and online software to find their suitability as drug targets. The structure of the predicted drug targets was also modeled and validated. Among three predicted drug targets, MUL_4536 was subjected to molecular docking with some known inhibitor compounds also. Receptor-ligand complex with the highest binding energy was selected for molecular dynamic (MD) simulation to determine the structural stability of the complex. Results: Three virulence proteins MUL_4536, MUL_3640, and MUL_2329 encoding enzymes iso-citrate lyase, lysine-N-oxygenase, pup-protein ligase, respectively were predicted as a drug target against M. ulcerans. Isocitrate lyase has been identified as a potential drug target in many other mycobacterial and non-mycobacterial diseases. Lysine-N-oxygenase is the enzyme of mycobactin biosynthesis pathway and pup-protein ligase is associated with the pup-proteasome system. Proteins of these pathways have been studied as attractive drug targets in previous research works, which further support our predictions. Conclusion: Our computational analysis predicted new drug targets, which could be used to design drugs against M. ulcerans. However, these predicted proteins require further experimental validation for their potential use as drug targets. other: NA

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3