Mutations in ponA , the Gene Encoding Penicillin-Binding Protein 1, and a Novel Locus, penC , Are Required for High-Level Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae

Author:

Ropp Patricia A.1,Hu Mei2,Olesky Melanie2,Nicholas Robert A.2

Affiliation:

1. Departments of Chemistry

2. Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365

Abstract

ABSTRACT Chromosomally mediated penicillin resistance in Neisseria gonorrhoeae occurs in part through alterations in penicillin-binding proteins (PBPs) and a decrease in outer membrane permeability. However, the genetic and molecular mechanisms of transformation of a penicillin-susceptible strain of N. gonorrhoeae to high-level penicillin resistance have not been clearly elucidated. Previous studies suggested that alterations in PBP 1 were involved in high-level penicillin resistance. In this study, we identified a single amino acid mutation in PBP 1 located 40 amino acids N terminal to the active-site serine residue that was present in all chromosomally mediated resistant N. gonorrhoeae (CMRNG) strains for which MICs of penicillin were ≥1 μg/ml. PBP 1 harboring this point mutation (PBP 1*) had a three- to fourfold lower rate of acylation ( k 2 / K' ) than wild-type PBP 1 with a variety of β-lactam antibiotics. Consistent with its involvement in high-level penicillin resistance, replacement of the altered ponA gene ( ponA1 ) in several CMRNG strains with the wild-type ponA gene resulted in a twofold decrease in the MICs of penicillin. Surprisingly, transformation of an intermediate-level penicillin-resistant strain (PR100; FA19 penA4 mtr penB5 ) with the ponA1 gene did not increase the MIC of penicillin for this strain. However, we identified an additional resistance locus, termed penC , which was required along with ponA1 to increase penicillin resistance of PR100 to a high level (MIC = 4 μg/ml). The penC locus by itself, when present in PR100, increases the MICs of penicillin and tetracycline twofold each. These data indicate that an additional locus, penC , is required along with ponA1 to achieve high-level penicillin resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3