Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis

Author:

Bischof D1,Pulford K1,Mason D Y1,Morris S W1

Affiliation:

1. Department of Experimental Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

Abstract

The NPM-ALK fusion gene, formed by the t(2;5)(p23;q35) translocation in non-Hodgkin's lymphoma, encodes a 75-kDa hybrid protein that contains the amino-terminal 117 amino acid residues of the nucleolar phosphoprotein nucleophosmin (NPM) joined to the entire cytoplasmic portion of the receptor tyrosine kinase ALK (anaplastic lymphoma kinase). Here, we demonstrate the transforming ability of NPM-ALK and show that oncogenesis by the chimeric protein requires the activation of its kinase function as a result of oligomerization mediated by the NPM segment. Sedimentation gradient experiments revealed that NPM-ALK forms in vivo multimeric complexes of approximately 200 kDa or greater that also contain normal NPM. Cell fractionation studies of the t(2;5) translocation-containing lymphoma cell line SUP-M2 showed NPM-ALK to be localized within both the cytoplasmic and nuclear compartments. Immunostaining performed with both polyclonal and monoclonal anti-ALK antibodies confirmed the dual location of the oncoprotein and also indicated that NPM-ALK is abundant within both the nucleoplasm and the nucleolus. An intact NPM segment is absolutely required for NPM-ALK-mediated oncogenesis, as indicated by our observation that three different NPM-ALK mutant proteins lacking nonoverlapping portions of the NPM segment were each unable to form complexes, lacked kinase activity in vivo, and failed to transform cells. However, NPM could be functionally replaced in the fusion protein with the portion of the unrelated translocated promoter region (TPR) protein that activates the TPR-MET fusion kinase by mediating dimerization through its leucine zipper motif. This engineered TPR-ALK hybrid protein, which transformed cells almost as efficiently as NPM-ALK, was localized solely within the cytoplasm of cells. These data indicate that the nuclear and nucleolar localization of NPM-ALK, which probably occur because of transport via the shuttling activity of NPM, is not required for oncogenesis. Further, the activation of the truncated ALK protein by a completely heterologous oligomerization domain suggests that the functionally important role of the NPM segment of NPM-ALK in transformation is restricted to the formation of kinase-active oligomers and does not involve the alteration of normal NPM functions.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 311 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3