Effects of Renal Impairment on the Pharmacokinetics of Morinidazole: Uptake Transporter-Mediated Renal Clearance of the Conjugated Metabolites

Author:

Zhong Kan,Li Xiuli,Xie Cen,Zhang Yifan,Zhong Dafang,Chen Xiaoyan

Abstract

ABSTRACTMorinidazole is a novel 5-nitroimidazole antimicrobial drug that undergoes extensive metabolism in humans viaN+-glucuronidation (N+-glucuronide ofS-morinidazole [M8-1] andN+-glucuronide ofR-morinidazole [M8-2]) and sulfation (sulfate conjugate of morinidazole [M7]). Our objectives were to assess the effects of renal impairment on the pharmacokinetics (PK) of morinidazole and to elucidate the potential mechanisms. In this parallel-group study, healthy subjects and patients with severe renal impairment received an intravenous infusion of 500 mg of morinidazole. Plasma and urine samples were collected and analyzed. The areas under the plasma concentration-time curves (AUC) for M7, M8-1, and M8-2 were 15.1, 20.4, and 17.4 times higher, respectively, in patients with severe renal impairment than in healthy subjects, while the AUC for morinidazole was 1.5 times higher. The urinary recovery of the major metabolites was not significantly different between the two groups over 0 to 48 h, but the renal clearances of M7, M8-1, and M8-2 in patients were 85.3%, 92.5%, and 92.2% lower, respectively.In vitrotransporter studies revealed that M7 is a substrate for organic anion transporter 1 (OAT1) and OAT3 (Km= 28.6 and 54.0 μM, respectively). Only OAT3 transported M8-1 and M8-2. Morinidazole was not a substrate for the transporter-transfected cells examined. These results revealed that the function or activity of renal uptake transporters might be impaired in patients with severe renal impairment, which accounted for dramatically increased plasma exposure and reduced renal clearance of the conjugated metabolites of morinidazole, the substrates of renal transporters in patients. It will help clinicians to adjust the dose in patients with severe renal impairment and to predict possible transporter-based drug-drug interactions.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3