Illegal dumping of oil and gas wastewater alters arid soil microbial communities

Author:

Kashani Mitra1ORCID,Engle Mark A.2ORCID,Kent Douglas B.3ORCID,Gregston Terry4,Cozzarelli Isabelle M.1ORCID,Mumford Adam C.5ORCID,Varonka Matthew S.1ORCID,Harris Cassandra R.1ORCID,Akob Denise M.1ORCID

Affiliation:

1. U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA

2. Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA

3. U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA

4. Bureau of Land Management, Carlsbad, New Mexico, USA

5. U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA

Abstract

ABSTRACT The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly ( P < 0.01) differed between dump and control zones, with soils from dump areas having significantly ( P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils. IMPORTANCE The long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.

Funder

DOI | U.S. Geological Survey

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference170 articles.

1. U.S. EIA. 2021. Drilling and completion improvements support Permian Basin hydrocarbon production on U.S Energy Information Administration. Available from: https://www.eia.gov/todayinenergy/detail.php?id=50016. Retrieved 12 Jan 2021.

2. U.S. EIA. 2022. Advances in technology led to record new well productivity in the Permian Basin in 2021 on U.S Energy Information Administration. Available from: https://www.eia.gov/todayinenergy/detail.php?id=54079#tab1. Retrieved 3 Oct 2023.

3. U.S. EIA. 2023. Drilling Productivity Report: Permian Basin. U.S. Energy Information Administration Washington DC. Available from: https://www.eia.gov/petroleum/drilling/

4. The intensification of the water footprint of hydraulic fracturing

5. GWPC. 2022. U.S. produced water volumes and management practices in 2021. Ground Water Protection Council, Inc. https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3