Affiliation:
1. Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota
Abstract
ABSTRACT
Anthrax, caused by
Bacillus anthracis
, has been brought to the public's attention because of the 2001 bioterrorism attacks. However, anthrax is a disease that poses agricultural threats in the United States as well as human populations in Europe, China, Africa, and Australia. Glycerol monolaurate (GML) is a compound that has been shown to inhibit exotoxin production by
Staphylococcus aureus
and other gram-positive bacteria. Here, we study the effects of GML on growth and toxin production in
B. anthracis
. The Sterne strain of
B. anthracis
was grown to post-exponential phase with 0-, 10-, 15-, or 20-μg/ml concentrations of GML and then assayed quantitatively for protective antigen (PA) and lethal factor (LF). After 8 h, GML at concentrations greater than 20 μg/ml was bacteriostatic to growth of the organism. However, a 10-μg/ml concentration of GML was not growth inhibitory, but amounts of PA and LF made were greatly reduced. This effect was not global for all proteins when total secreted protein from culture fluids was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Through quantitative reverse transcription-PCR assays, this toxin-inhibitory effect was shown to occur at the transcriptional level, since amounts of mRNA for
pagA
(PA),
lef
(LF), and
cya
(edema factor) were reduced. Surprisingly, mRNA levels of
atxA
, a regulator of exotoxin gene expression, rose in the presence of GML. These data will be useful in developing therapeutic tools to treat anthrax disease, whether in animals or humans. These results also suggest that mechanisms of virulence regulation exist independent of
atxA
.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献