Single nucleotide variation catalog from clinical isolates mapped on tertiary and quaternary structures of ESX-1-related proteins reveals critical regions as putative Mtb therapeutic targets

Author:

Tzfadia Oren1ORCID,Gijsbers Abril2,Vujkovic Alexandra34ORCID,Snobre Jihad1,Vargas Roger5,Dewaele Klaas1,Meehan Conor J.16,Farhat Maha5,Hakke Sneha7,Peters Peter J.7,de Jong Bouke C.1ORCID,Siroy Axel8ORCID,Ravelli Raimond B. G.7

Affiliation:

1. Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium

2. Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico

3. Clinical Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium

4. ADReM Data Lab, University of Antwerp, Antwerp, Belgium

5. Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA

6. Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom

7. Division of Nanoscopy, Maastricht Multimodal Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands

8. Unité de soutien à l'Institut Européen de Chimie et Biologie (IECB), CNRS, INSERM, IECB, US1, Université de Bordeaux, Pessac, France

Abstract

ABSTRACT Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein–protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins’ structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3