Comparative genomic analysis of an emerging Pseudomonadaceae member, Thiopseudomonas alkaliphila

Author:

Burcham Zachary M.1ORCID

Affiliation:

1. Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA

Abstract

ABSTRACT Thiopseudomonas alkaliphila , an organism recently classified within the Pseudomonadaceae family, has been detected in diverse sources such as human tissues, animal guts, industrial fermenters, and decomposition environments, suggesting a diverse ecological role. However, a large knowledge gap exists in how T. alkaliphila functions. In this comparative genomic analysis, adaptations indicative of habitat specificity among strains and genomic similarity to known opportunistic pathogens are revealed. Genomic investigation reveals a core metabolic utilization of multiple oxidative and non-oxidative catabolic pathways, suggesting adaptability to varied environments and carbon sources. The genomic repertoire of T. alkaliphila includes secondary metabolites, such as antimicrobials and siderophores, indicative of its involvement in microbial competition and resource acquisition. Additionally, the presence of transposases, prophages, plasmids, and Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems in T. alkaliphila genomes suggests mechanisms for horizontal gene transfer and defense against viral predation. This comprehensive genomic analysis expands our understanding on the ecological functions, community interactions, and potential virulence of T. alkaliphila , while emphasizing its adaptability and diverse capabilities across environmental and host-associated ecosystems. IMPORTANCE As the microbial world continues to be explored, new organisms will emerge with beneficial and/or pathogenetic impact. Thiopseudomonas alkaliphila is a species originally isolated from clinical human tissue and fluid samples but has not been attributed to disease. Since its classification, T. alkaliphila has been found in animal guts, animal waste, decomposing remains, and biogas fermentation reactors. This is the first study to provide an in-depth view of the metabolic potential of publicly available genomes belonging to this species through a comparative genomics and draft pangenome calculation approach. It was found that T. alkaliphila is metabolically versatile and likely adapts to diverse energy sources and environments, which may make it useful for bioremediation and in industrial settings. A range of virulence factors and antibiotic resistances were also detected, suggesting T. alkaliphila may operate as an undescribed opportunistic pathogen.

Funder

University of Tennessee, Knoxville

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3