A comparative analysis of soil physicochemical properties and microbial community structure among four shelterbelt species in the northeast China plain

Author:

Yang Jia1,Ding Dang1,Zhang Xiuru1,Gu Huiyan1ORCID

Affiliation:

1. School of Forestry, Northeast Forestry University, Harbin, China

Abstract

ABSTRACT Conducting studies that focus on the alterations occurring in the soil microbiome within protection forests in the northeast plain is of utmost importance in evaluating the ecological rehabilitation of agricultural lands in the Mollisols region. Nevertheless, the presence of geographic factors contributes to substantial disparities in the microbiomes, and thus, addressing this aspect of influence becomes pivotal in ensuring the credibility of the collected data. Consequently, the objective is to compare the variations in soil physicochemical properties and microbial community structure within the understory of diverse shelterbelt species. In this study, we analyzed the understory soils of Juglans mandshurica (Jm), Fraxinus mandschurica (Fm), Acer mono (Am), and Betula platyphylla (Bp) from the same locality. We employed high-throughput sequencing technology and soil physicochemical data to investigate the impact of these different tree species on soil microbial communities, chemical properties, and enzyme activities in Mollisols areas. Significant variations in soil nutrients and enzyme activities were observed among tree species, with soil organic matter content ranging from 49.1 to 67.7 g/kg and cellulase content ranging from 5.3 to 524.0 μg/d/g. The impact of tree species on microbial diversities was found to be more pronounced in the bacterial community (Adnoism: R = 0.605) compared to the fungal community (Adnoism: R = 0.433). The linear discriminant analysis effect size (LEfSe) analysis revealed a total of 5 (Jm), 3 (Bp), and 6 (Am) bacterial biomarkers, as well as 2 (Jm), 6 (Fm), 4 (Bp), and 1 (Am) fungal biomarker at the genus level (LDA3). The presence of various tree species was observed to significantly alter the relative abundance of specific microbial community structures, specifically in Gammaproteobacteria, Ascomycota, and Basidiomycota. Furthermore, environmental factors, such as pH, total potassium, and available phosphorus were important factors influencing changes in bacterial communities. We propose that Fm be utilized as the primary tree species for establishing farmland protection forests in the northeastern region, owing to its superior impact on enhancing soil quality. IMPORTANCE The focal point of this study lies in the implementation of a controlled experiment conducted under field conditions. In this experiment, we deliberately selected four shelterbelts within the same field, characterized by identical planting density, and planting year. This deliberate selection effectively mitigated the potential impact of extraneous factors on the three microbiomes, thereby enhancing the reliability and validity of our findings.

Funder

MOST | National Key Research and Development Program of China

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3