Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage

Author:

Hussain SadamORCID,Hussain SaddamORCID,Guo Ru,Sarwar Muhammad,Ren Xiaolong,Krstic Djordje,Aslam ZubairORCID,Zulifqar UsmanORCID,Rauf AbdurORCID,Hano ChristopheORCID,El-Esawi Mohamed A.ORCID

Abstract

Human efforts to produce more food for increasing populations leave marks on the environment. The use of conventional agricultural practices, including intensive tillage based on the removal of crop residue, has magnified soil erosion and soil degradation. In recent years, the progressive increase in the concentration of greenhouse gases (GHGs) has created global interest in identifying different sustainable strategies in order to reduce their concentration in the atmosphere. Carbon stored in soil is 2–4 times higher than that stored in the atmosphere and four times more when compared to carbon stored in the vegetation. The process of carbon sequestration (CS) involves transferring CO2 from the atmosphere into the soil or storage of other forms of carbon to either defer or mitigate global warming and avoid dangerous climate change. The present review discusses the potential of soils in sequestering carbon and mitigating the accelerated greenhouse effects by adopting different agricultural management practices. A significant amount of soil organic carbon (SOC) could be sequestered by conversion of conventional tillage to conservation tillage. The most important aspect of conservation agriculture is thought to improve plant growth and soil health without damaging the environment. In the processes of climate change mitigation and adaptation, zero tillage has been found to be the most eco-friendly method among different tillage techniques. No-till practice is considered to enable sustainable cropping intensification to meet future agricultural demands. Although no-tillage suggests merely the absence of tillage, in reality, several components need to be applied to a conservation agriculture system to guarantee higher or equal yields and better environmental performance than conventional tillage systems.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3