Genomic and metabolic insights into the first host-associated isolate of Psychrilyobacter

Author:

Liu Meijia1ORCID,Wei Guangshan12ORCID,Lai Qiliang1,Huang Zhaobin1,Li Min3,Shao Zongze12ORCID

Affiliation:

1. Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of the PR China; State Key Laboratory Breeding Base of Marine Genetic Resources; Fujian Key Laboratory of Marine Genetic Resources , Xiamen, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University , Zhuhai, China

3. College of Ocean and Earth Sciences, Xiamen University , Xiamen, China

Abstract

ABSTRACT Although gut bacteria are vital to their hosts, few studies have focused on marine animals. Psychrilyobacter is frequently related to various marine animals, but its interaction with host remains unknown due to the lack of host-associated isolate or genomic information. Here, we combined cultivation-independent and cultivation-dependent methods to uncover the potential roles of Psychrilyobacter in the host abalone. The high-throughput sequencing and literature compiling results indicated that Psychrilyobacter is widely distributed in marine and terrestrial ecosystems with both host-associated and free-living lifestyles, but with a strong niche preference in the guts of marine invertebrates, especially abalone. By in vitro enrichment that mimicked the gut inner environment, the first host-related pure culture of Psychrilyobacter was isolated from the abalone intestine. Phylogenetic, physiological, and biochemical characterizations suggested that it represents a novel species named Psychrilyobacter haliotis B1. Carbohydrate utilization experiments and genomic evidence indicated that B1 can utilize diverse host-food-related monosaccharides and disaccharides but not polysaccharides, implying its potential role in the downstream fermentation instead of the upstream food degradation in the gut. Particularly, this strain showed potential to colonize the gut and benefit the host via different strategies, such as the short-chain fatty acids generation by fermenting peptides and/or amino acids, and the putative production of diverse vitamins and antibiotics to support the host growth and antipathogenicity. To our knowledge, strain B1 represents the first host-related pure culture of Psychrilyobacter ; genomic and metabolic evidence showed some beneficial characteristics of the dominant gut anaerobe to the host. IMPORTANCE Psychrilyobacter is a globally distributed bacterial genus and with an inhabiting preference for guts of marine invertebrates. Due to the difficulty of cultivation and the limited genomic information, its role in host remains largely unknown. We isolated the first host-associated Psychrilyobacter species from abalone gut and uncovered its functional potential to the host through different mechanisms. Our findings provide some insights into the understanding of host-microbe interactions on a core taxon with the marine invertebrates, and the isolate may have an application potential in the protection of marine animals.

Funder

MOST | National Natural Science Foundation of China

Scientific Research Foundation of Third Institute of Oceanography, MNR

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3