Ecological filtering and phylogeographic structuring of Psychrilyobacter within two closely related limpet species from the Southern Ocean

Author:

Schwob GuillaumeORCID,Rosenfeld Sebastián,González-Wevar Claudio,Orlando Julieta

Abstract

Abstract Purpose The ecological interdependence between macroorganisms and their microbial communities promotes stable associations over time, potentially leading to their evolutionary co-diversification. The detection of intricate eco-evolutionary interactions between animals and their microbiota is challenging, primarily due to complex bacterial communities related to poorly resolved host population structure. Strikingly, co-diversification in invertebrates, characterized by generally less complex microbiota, remains largely unexplored. Here, we compared the bacterial communities associated with two distinct lineages of Nacella limpets, a dominant shallow water patellogastropod of the Southern Ocean shores with a well-described population structure. Our goals were to elucidate the uniqueness of Nacella microbiota, resulting from an ecological filter that selectively favors certain bacterial taxa. Additionally, we aimed to depict the genetic structure of bacterial symbiont seeking evidence of co-diversification with Nacella. Methods We sequence the V4-V5 regions of the bacterial 16S rRNA gene in three distinct microenvironments associated with Nacella: rock substrate, radula, and whole intestine. These samples were collected from two populations of Nacella deaurata and Nacella concinna, located in the West Antarctic Peninsula and Falkland/Malvinas Islands, respectively. Results We assessed ecological filtering patterns in the limpet microbiota, uncovering unique bacterial communities in both radulas and intestines, with specifically enriched bacterial taxa compared to the surrounding environment. By examining microdiversity patterns of core bacterial taxa, we revealed a deep phylogeographic structure of Psychrilyobacter in Nacella intestines. Conclusion We highlight the Southern Ocean limpets of the Nacella genus as a novel and promising model for studying co-diversification between marine mollusks and their resident microbiota.

Funder

ANID Millennium Science Initiative Program

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3