Bacterial community dynamics during distilled spirit fermentation: influence of mash recipes and fermentation processes

Author:

Liu Shuang1ORCID,Greenhut Isaac V.1ORCID,Heist E. Patrick2,Heist Melanie R.2,Moe Luke A.1ORCID

Affiliation:

1. Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky, USA

2. Ferm Solutions Inc , Danville, Kentucky, USA

Abstract

ABSTRACT The popularity and production of whiskey have grown dramatically in recent years. During whiskey fermentation, lactic acid bacteria (LAB) are a major concern since they can outcompete yeast and spoil the fermentation. However, some bacteria present in the fermentation could potentially counter this effect and promote fermentation efficiency. To better understand the possible roles bacteria play in yeast-based whiskey fermentations, we examined bacterial community dynamics across fermentation stages and investigated how variation in the mash recipe affects bacterial community composition and fermentation efficiency. To this end, we collected 193 samples from three distilleries at the beginning (Cook/set), middle (Fermentation), and end (Drop) of whiskey fermentation, with six mash recipes sampled from one distillery. We used high-performance liquid chromatography (HPLC) to quantify the contents of sugars, organic acids, and ethanol, which revealed distinct differences between distilleries and mash recipes. High-throughput Illumina Miseq sequencing of the 16S rRNA gene V4 region revealed that bacterial communities shifted toward Firmicutes during the fermentative conversion of sugar to ethanol, especially Lactobacillales. Mash recipes also influenced sugar composition, fermentation efficiency, and microbial dynamics. Recipe-specific operational taxonomic unit (OTU) biomarkers in Drop samples included Leuconostoc for corn, Lactococcus for wheat, and Lactobacillaceae_unclassified for rye, while Escherichia/Shigella was associated with sorghum, suggesting potential suppression of LAB. IMPORTANCE Production of ethanol from sugars and yeast is an ancient, ostensibly simple process. The source of sugars varies depending on the desired product and can include fruits, vegetables, molasses, honey, or grains, among other things. The source of yeast can be natural in the case of spontaneous ferments, but dry yeast addition is typical for large-scale fermentations. While the polymicrobial nature of some alcoholic fermentations is appreciated (e.g., for wine), most grain-based ethanol producers view microbes, apart from the added yeast, as “contaminants” meant to be controlled in order to maximize efficiency of ethanol production per unit of sugar. Nonetheless, despite rigorous cleaning-in-place measures and cooking the mash, bacteria are routinely cultured from these fermentations. We now know that bacteria can contribute to fermentation efficiency on an industrial scale, yet nothing is known about the makeup and stability of microbial communities in distilled spirit fermentations. The work here establishes the roles of mash recipes and distillery practices in microbial community assembly and dynamics over the course of fermentation. This represents an important first step in appreciating the myriad roles of bacteria in the production of distilled spirits.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Reference27 articles.

1. Kentucky Distillers’ Association . 2020. Bourbon facts. Available from: https://kybourbon.com/bourbon_culture-2/key_bourbon_facts/

2. Blake . 2016. Bourbon mash bill explained. Available from: http://bourbonr.com/blog/bourbon-mash-bill-explained

3. Assessing the impact of corn variety and Texas terroir on flavor and alcohol yield in new-make bourbon whiskey

4. Weinstock S . 2016. Understanding the riddle of sorghum whiskey. Available from: https://thewhiskeywash.com/whiskey-styles/american-whiskey/sorghum-whiskey-friend-foe/

5. Characterization of the Most Odor-Active Compounds in an American Bourbon Whisky by Application of the Aroma Extract Dilution Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3