Sirtulin–Ypk1 regulation axis governs the TOR signaling pathway and fungal pathogenicity in Cryptococcus neoformans

Author:

Chai Zhenghua1,Li Yanjian2ORCID,Zhang Jing3,Ding Chen3,Tong Xiujuan4,Zhang Zhijie1ORCID

Affiliation:

1. Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China

2. College of Sciences, Northeastern University, Shenyang, China

3. College of Life and Health Sciences, Northeastern University, Shenyang, China

4. Department of Laboratory Medicine of Central Hospital of Chaoyang, Chaoyang, China

Abstract

ABSTRACT Cryptococcus neoformans is a life-threatening fungal pathogen that is a causative agent for pulmonary infection and meningoencephalitis in both immunocompetent and immunodeficient individuals. Recent studies have elucidated the important function of the target of rapamycin (TOR) signaling pathway in the modulation of C. neoformans virulence factor production and pathogenicity in animal infection models. Herein, we discovered that Ypk1, a critical component of the TOR signaling pathway, acts as a critical modulator in fungal pathogenicity through post-translational modifications (PTMs). Mass spectrometry analysis revealed that Ypk1 is subject to protein acetylation at lysines 315 and 502, and both sites are located within kinase functional domains. Inhibition of the C. neoformans TOR pathway by rapamycin activates the deacetylation process for Ypk1. The YPK1Q strain, a hyper-acetylation of Ypk1, exhibited increased sensitivity to rapamycin, decreased capsule formation ability, reduced starvation tolerance, and diminished fungal pathogenicity, indicating that deacetylation of Ypk1 is crucial for responding to stress. Deacetylase inhibition assays have shown that sirtuin family proteins are critical to the Ypk1 deacetylation mechanism. After screening deacetylase mutants, we found that Dac1 and Dac7 directly interact with Ypk1 to facilitate the deacetylation modification process via a protein–protein interaction. These findings provide new insights into the molecular basis for regulating the TORC–Ypk1 axis and demonstrate an important function of protein acetylation in modulating fungal pathogenicity. IMPORTANCE Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. While there are currently few effective antifungal treatments, the absence of novel molecular targets in fungal pathogenicity hinders the development of new drugs. There is increasing evidence that protein post-translational modifications (PTMs) can modulate the pathogenicity of fungi. In this study, we discovered that the pathogenicity of C. neoformans was significantly impacted by the dynamic acetylation changes of Ypk1, the immediate downstream target of the TOR complex. We discovered that Ypk1 is acetylated at lysines 315 and 502, both of which are within kinase functional domains. Deacetylation of Ypk1 is necessary for formation of the capsule structure, the response to the TOR pathway inhibitor rapamycin, nutrient utilization, and host infection. We also demonstrate that the sirtuin protein family is involved in the Ypk1 deacetylation mechanism. We anticipate that the sirtuin–Ypk1 regulation axis could be used as a potential target for the development of antifungal medications.

Funder

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3