Post-Translational Modifications Drive Success and Failure of Fungal–Host Interactions

Author:

Retanal CharmaineORCID,Ball Brianna,Geddes-McAlister JenniferORCID

Abstract

Post-translational modifications (PTMs) change the structure and function of proteins and regulate a diverse array of biological processes. Fungal pathogens rely on PTMs to modulate protein production and activity during infection, manipulate the host response, and ultimately, promote fungal survival. Given the high mortality rates of fungal infections on a global scale, along with the emergence of antifungal-resistant species, identifying new treatment options is critical. In this review, we focus on the role of PTMs (e.g., phosphorylation, acetylation, ubiquitination, glycosylation, and methylation) among the highly prevalent and medically relevant fungal pathogens, Candida spp., Aspergillus spp., and Cryptococcus spp. We explore the role of PTMs in fungal stress response and host adaptation, the use of PTMs to manipulate host cells and the immune system upon fungal invasion, and the importance of PTMs in conferring antifungal resistance. We also provide a critical view on the current knowledgebase, pose questions key to our understanding of the intricate roles of PTMs within fungal pathogens, and provide research opportunities to uncover new therapeutic strategies.

Funder

University of Guelph

Canadian Foundation of Innovation

Banting Research Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3