An oral commensal attenuates Pseudomonas aeruginosa -induced airway inflammation and modulates nitrite flux in respiratory epithelium

Author:

Baty Joshua J.1ORCID,Stoner Sara N.1,McDaniel Melissa S.1,Huffines Joshua T.1,Edmonds Sara E.1,Evans Nicholas J.1,Novak Lea1,Scoffield Jessica A.1ORCID

Affiliation:

1. Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama, USA

Abstract

ABSTRACT Polymicrobial airway infections in persons with cystic fibrosis (pwCF) can positively or negatively impact the course of disease. A major CF pathogen, Pseudomonas aeruginosa, often establishes a chronic infection leading to lung deterioration. Interestingly, the presence of certain oral commensal streptococci is correlated with improved outcomes for pwCF. We previously reported that hydrogen peroxide production by these commensals combined with nitrite generates reactive nitrogen intermediates (RNI), which inhibit P. aeruginosa in vitro . In this study, we utilized a rat co-infection lung model to assess whether oral commensal-generated RNI can restrict the pathogenesis of a CF isolate of P. aeruginosa . We report that the oral commensal Streptococcus parasanguinis and nitrite reduce P. aeruginosa -induced host inflammation in wild-type rats. To better recapitulate CF-specific airway conditions, we used a bronchial epithelial cell culture model to gain a better understanding of how S. parasanguinis and nitrite may influence P. aeruginosa burden during a CF infection. Hence, we co-infected wild-type and cystic fibrosis transconductance regulator (CFTR) channel-deficient bronchial epithelial cells with P. aeruginosa and S. parasanguinis with or without nitrite. Strikingly, S. parasanguinis reduced the bacterial burden of P. aeruginosa without nitrite, promoted epithelial cell viability, and stimulated nitrite production in the wild-type and CFTR-deficient epithelial cells, where nitrite induction was more apparent in the CFTR mutant cells. Taken together, our study demonstrates that the commensal S. parasanguinis may provide protection against P. aeruginosa -induced inflammation and cell death, as well as modulate nitrite flux in airway epithelial cells. IMPORTANCE Respiratory infections are a leading cause of morbidity and mortality in people with cystic fibrosis (CF). These infections are polymicrobial in nature with overt pathogens and other colonizing microbes present. Microbiome data have indicated that the presence of oral commensal bacteria in the lungs is correlated with improved outcomes. We hypothesize that one oral commensal, Streptococcus parasanguinis, inhibits CF pathogens and modulates the host immune response. One major CF pathogen is Pseudomonas aeruginosa , a Gram-negative, opportunistic bacterium with intrinsic drug resistance and an arsenal of virulence factors. We have previously shown that S. parasanguinis inhibits P. aeruginosa in vitro in a nitrite-dependent manner through the production of reactive nitrogen intermediates. In this study, we demonstrate that while this mechanism is evident in a cell culture model of the CF airway, an alternative mechanism by which S. parasanguinis may improve outcomes for people with CF is through immunomodulation.

Funder

HHS | NIH | National Institute of Dental and Craniofacial Research

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

National Science Foundation

HHS | NIH | National Heart, Lung, and Blood Institute

Cystic Fibrosis Foundation

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3